IBM Python toolkit measures AI uncertainty
IBM has created an open source Python library, called Uncertainty Qualification 360 or UQ360, that provides developers and data scientists with algorithms to quantify the uncertainty of machine learning predictions, with the goal of improving the transparency of machine learning models and trust in AI.Available from IBM Research, UQ360 aims to address problems that result when AI systems based on deep learning make overconfident predictions. With the Python toolkit, users are provided algorithms to streamline the process of quantifying, evaluating, improving, and communicating the uncertainty of predictive models. Currently, the UQ360 toolkit provides 11 algorithms to estimate different types of uncertainties, collected behind a common interface. IBM also provides guidance on choosing UQ algorithms and metrics.To read this article in full, please click here
IBM has created an open source Python library, called Uncertainty Qualification 360 or UQ360, that provides developers and data scientists with algorithms to quantify the uncertainty of machine learning predictions, with the goal of improving the transparency of machine learning models and trust in AI.
Available from IBM Research, UQ360 aims to address problems that result when AI systems based on deep learning make overconfident predictions. With the Python toolkit, users are provided algorithms to streamline the process of quantifying, evaluating, improving, and communicating the uncertainty of predictive models. Currently, the UQ360 toolkit provides 11 algorithms to estimate different types of uncertainties, collected behind a common interface. IBM also provides guidance on choosing UQ algorithms and metrics.